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SUMMARY

-—

The iterative interference method @ven in NACA TN No. 1.252
is applied to the solutim of the following three problems concerning
the design of cascadss:

(1} Determination bf”tho shapo and setting of thin (zero
thic~ess ) blades wit??a prescrilmd @pe of vortex distribution end
total vortex strength in a cascade of given solidity for a given
tirection of the mean flow.

(2) Determinatim of the shape and setting of thin blades with
certain prescribed types of yressure distri%utions over ODS surface
and prescribed total.vortex strength in a cascade of given solidity
for a given direotion of the mean flow. -.

.’
(3) wte~tioa of the blade setting for a cascade of given

airfoil shape and solidity that, for a given direction of the incoming
(upstreen) flow, wil.lprovide the front stagnation yoint exactly at
the lead~n~ ed+e.

A modification of the ba6ic prooedure of TN No. 1252 is also
described, in which tne direction of the incoming flow, rather than
the direction of the mean flow, is spacified.

ImRolYJ(xrIoN ~

In reference 1; en iterative interference.methQdwas debcri?md
for calculating the po~ritial flow on en airf~il in cascade. The
mthod, which makes use of charts originald.yemployed by Betz in a
similar study (reference 2), ev&lu&tes:the flow at each airfoil as
the sum of two ccmyonants - that due to the uniform man, or ‘!l?ree
stresm” flow, and the interierenca flow induced by tihepresence of
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d.1 the other airfoils of the cascade. AE W@ indicated in
reference 1, such an approach provides considerable flexibility and
permits the solution, with reasonable facilfty, of certain cascade
problems that would be very diffioult by the usual methods that
seek directly the confomal transformation oi’the cascade to a
circle. In the present paper the solutions of three such problems
are described and an example of eaoh is given. Two of the problems
ooncern the design of thin (zero thiokness) airfoil cascades having
prescribed types of vorticity distribution or pressure distribution
alo~ the blade. The other problem Is the determination of the
blade setting, for a cascade of given airfoil shape and solidity,
that, for a given direction of the inccming (upstream) flow, will
provide the front stagnation yoint exactly at the leading edge. A
modification of–the basic procedure of reference 1 is also described
in whioh the direction of the incoming flow, rather than the direoiion
of the mean flow, i~ speci.fied~

Basic conoepts and techniques are given in referenoe 1, and
detailsd discussions are accordingly given herein only for those
parts of the -procedurethat are not contained in referenoe 1.

SYM501S

flow velocity

component of flow velocity parallel-to stagger line

component of mean flow velocity normal to stagger line

blade angle, angle between choti and nomal to oascade axfs

angle between chord and velocity indicated by subscript

stream function

velocity potential

circulation required to provide stagnation point at trailing
edge

circulation required to provide stagnation point at leading
edge

circulation per untt am length

coordinates of noint on arc
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~ position of’ point onaro

radius of ciroular an

chord dlstanoe between points on aro

mm length

inurement of aro length

points on aro

angle of chord between

displ.acement normal to

angle of deviation

pointe on aro

ara

radius of tranefozmed circle

differenoe between cirole and near oirole angles

~i
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Subscripts

o

1

i

8

1?”

P

T

n

%

mean flaw

inoaud.ngflow

interference on oentral blade due to presente of extezmal blades

self-induaed fkm?

nom.al to cascade axis

parallel to oasoade axis

total

nose

tmiling edge
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0,1,11,111 zeroth, first, second, and third

u,7/ upper and lcwer surfaoes

a,b points on arm

PROBLEM3 IN TEE DESImT OF

Problem I

The problam most readily solved is
shape and setting of thin blades with a

THIN

XACA m 173.J234

apprcuhatio.ns

BLADES

the detenninatdon of the
prescribed type of vortici.ty

distribution and total vortex strength in a cascade of given solidity
ior a given direction of the mean flow, The procedure is as followst
a reasorxibleblade shape and setting are assume& for the zeroth
approximation of the iteration proces~. The stream funotion and
velooity poteutial on a particular”blade of the casaade, which will
be referred to as the oentml blade, are calculated as the sum of
those due to the followi~ three flows:

(1) The given mean flow

(2) The oascade fnterferenoe flow,”due to the vortici@- U.slmi- ““ ~ ‘-
buticn on all the other blades

(3) The self-induced flow due to tie vorticity distribution along
the central blade itself #

,.,

The assumed ehape is then rotated and di~torted to make ii
approximate a streamline in this flow (that is, to make it coi~ide
with a line along which the stream function is oonstant) and thti
new shape is used for the oaeoade blades of the next approximation.
Through iteration oi’this procedure until distortions are too small
to affect the flow, the desired blade shape and setting are obtained,

Meau flow.- For convenience, the component of the mean flow
velocity normal to the sta~er line v wilf be considered as unity.
The velocity VO of the mean flow is thmi kncwn from its direction.
The stresm function ‘tO and velocity potential Q. at a point

x,y on the central blade are then seen from figure 1 to be:

‘JJO(%Y) ‘- V()(x Sfn Cf,o-!-y Cos CXJ

.

.
?

Qo(x,y)--va(xmsq-y sin%) J
(1)
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where ~ 5.sthe angle of attack of the mean flow with respeot to

the chord.

~ascade interfer~tice flow.- !l?heprescribed vortioity distri-
bution on each biade of tiiecascade is replacedby a number of
disorete vortices, and the induced straemfunobion ~i and velocity

potential @i are found by usi~ the charts and methods discussed

in reference 1.
.

@elf’-inducedfbw,-!lhe stream funotion induced at a point b
of the central blade by the vorticity distribution on that lil.adeis
givenby the integral alongths blade of the imaginary part of the
complex flow function of the distribution, namely

% t

$s(sb) ‘- &

~

(2)7(9a} ~06#ab ‘a
6n

where 7 is circulation per unit arc length, and rab is the

length of the chord between b and the variable point a.

As the variable point a ap~roaches the point b, the integral
beoomes improper. If the segment from Sb - v to ~ Is made

sufficiently small, that portion of the bkde can be considered a
straight line and its vorticity uniform. Then rab becomes

IEb - sal and y(s) becomes a constant Y(6b). The etreem function

induced by that eegen’t then is

de~ - p

The total self-induued
then

stream funotion at the point b is



Since the funotlon

arbitrarily ehaped
numerically.
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.

k?&rab As not -own ~~tical~ for =

blade, the integrals of equation (h) are evaluated

!I’hecorrespondin~ integration for the velooity potential requires
special oare, inasmuch as the contribution of each vortex
element y(s)ds is multivalued. For the p~e~ent aase uniqueness may
be provfdedby using the section of the blade that lies to the rf@t
of the vortex element as the branch cut, In which case the potentials
contributed by a vortex element situated at a point a are defined
by ‘tieangles shown in figure 2. For a point b to the left of
a, the angles defining the potentials on the upper and lower sides,
~ and bl, al-ethe same. For a point b on the ti@t side of

a, however, it is necessaq to differentiate between bu and bZ;

thus the angle representln$ the yotential on the upper side is
designated ~abu$ and that repr’esent~ the potential on the lower

The velocity potentials .~ueto the entire blade at the upper and
bwer sides of a Toint 1 are then givenby

.-

.

.
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The average self-induced velocity potential at the @nt b is then

For convenience, a new angle
measured from right to left,
with respeot to b, and for

(6)

~b is now defined whiah is always
irrespective of the position of a
which the following relations then hold:

fOl? Sb > Sal
L
i’ (7)

“a~ ‘ aab - 3’(for sb<sa~

The average self-induced velooity potential at a point b is there-
fore givenby substituting relations (T) into equation (6), thus

-St

4~(5~] .2+

I

7(sahab Ma (8)

Sn

Since the angle Oab is not knownamlytically for an ahhitrari~

shaped blade, the Integral of eqpation (8) is evaluated.numerfoally.

The choice of a oiroular arc shape for the initial approxima-
tion facilitate the calculation of the self-induoed flow, especlaKLy
when uniform vorticity is specified. The self-induced velooity
potential and stream funotion for constant vorticity on a ci~ular
arc are.dez%ved in the appendix.

,.
R@ation and distortion of the blade shape.- The sym of the— ———

etream functions ~ =lJ(J++8 + $~ on the assumed b@de will in

general not be the same at eve~ point; that is, the blade will ‘
not be a streamline in the ccqlete flow. The flow orossbs’the



blade at each point at = angle given by the ratio of the local
nonual velocity to the local ~~ ~“ Thus ,

(9)

where %(s) is the deviation singlemeasured clockwise, and n is

the coordinate nomml to the arc at any point. In order to makethe
bkd.e fOllow the streenline, the blade must be distotied eo that
the direction of each elmumt ie ahenged by this deviation angle.
For small deviatione,the distortion i8 effected by a nonual displace-
ment given by the integral of the deviation engle alo~, the blade

i

As
average

an Mtemediate ~tep_the given shape q be rotated by the
angle of devfatiau 6 before the blade sha~e 18 distorted.

14evu&n fiow and interfzwnce velocity potentials ‘ad Btresm
functions are then fount:,(the self-induced flow remains the ssme,

.

however) and the Ustofions are calculated as just described. In
order to minimize tie distortions, dlsplaoaments are taken relative 1
to ths &lsplaceme@ at the yoint where the calculated displacement is

,

the average of the extreme displacements.

If a finite vorticity is required near the tips, inftnlte slopes
appear at the tips (reference 3, p. 10]. The finite slopes that
are defined by the arbit.n~ procedure of reference 3 man, however,
be adapted to the preuent p~ioblem. The blade shape at the tips
given la I’eference3 for a similar vorticity distribution can be use%
if the ordinate~ are multipM.ed by the U.ft coefficient of the blade
based on the average tangential velocity at the tip.

Example I.- Asan exam@e of the design prcnedure outllned, a
bla&was deslgued for a casoade of solidity 1.5 suuh that, with a
IMSXIflow direotion xx an angle of’40° 54? with the nOUMLL to
the stagger line, it would have uniform vorticity along the blado and
a %otal vortex Htrength of 1.7321 per blade (based on unit velocity
normal to the sta~r line and unit cascade spacing). These condi-
tione correspond to a flow coming In at 60° to the normal and
leaving normal to the stagger line.
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A 60° circular aro (indicated by O in fig. ~) with a chord of
1.5 was chosen ag the zeroth approximation. The blade angle was
taken as 300 to the normal so that the tips were tangent to the
incoming and outgoing flow directions. The angle of attack of the
mean flow is then 10054?. 13yfollowing the indicated prooedure the
average angle of deviation was”found to be 7311. Rotating the
circular aro through this angle and repeating the prooedure described
gave the eha.pedesignated.as.I in figure 3. The rotation anglea for
the second and third app~--ttone were 0°491 and 0°9~, respectively.
The shapes obtained are designated as II and 111 in figure 3. The
angles Of deviation 6 found after rotation me plotted in figure 4.
The finalblade angle was 36°35t. The squares of the velocLt.i.eson
the upper and kwer sides are.plotted in figure 5, ,,

The prooedure of
of thin blades having

.Problem II

problem I can easily be adapted to the desi~
certain prescribed types of vel.ooi.tyor

pressure distributlo~ instead-of vorticity-distributions-.In the
second problem the solidity of the”oasoade, the meen flow U’rection,
and the total vortioity per blade are given, d-a Thi”n blade having
the.preearibed type of velooity distribution over one side is
sought. The prooedure is somewhat similar to that of the first

. problem. A reasonable blade shape, blade angle, and vorticity
@distributionare assumed for the zeroih approximation. The averd$e
total velocity potential Q.T is found as in problemI aridthe average

* tangential velooity is foun& frcunthe slope of the ourve of @T
plotted against the distance s along the blade. This average
tangential velocity is now plotted against s and the preqoribed
type of velocity distribution on one surface i8 then plotted on
the same graph so that the area between the two curves is equal to
half the desired tote.1vortlcity. (The possibility of uniquely
performing this last step determines whether the type of velooity
,distributionspecified in the problqm.is one for which a solution can
be found by this procedure). The velocity ~qtribu~ion on the
other surface may now be ~Lotte& such that the qverqg%veloglty
curve falls midway between it and the ourve of,the veloc$ty on the

‘V first surface. The area between the velocity curves for the upper
and lower surfaces then represents the total vortex strength, and
the difference in ord$nates at eaoh value,of .s reprem6nts the 100al
vorticity on the blade. ,

The vortex distribution thus determined is u6ed,to find a
first approximation to the shape apd blade angle by carrying out
one step of the procedure of p~bl~ I.” By assuming the -vortex.
distribution to be unchanged, the total avemge velooity potential *T
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is then found for this new blade and the average tangential
velocity is determined. A new vortlcity distribution ie then found
by tilesame procedure as tefora. The process Is continued until
further changes become Inappreciable.

Fsample II.- By following the procedure out~ned, a cascade of
solidity 1.5 was designed so that the tot@ vortex strength per bkde
was 1.73E’lin a mean flow making an angle of 40°54t tith the nmmel
to the stagger line, Just as in the first exemple, but with the
velocity on the upper surface uniform over the forwazd 60 pezment of
the arc and then decreasing linearly to the mean velocity at the
trailhg edge.

The blade shape, blade angle,‘andvortex distribution obtained
in example I were chosen for the zeroth approximation. The new vortex
distribution was found by plotting the average tangential velocity,
as in figure 6, and then finding an upper surface veloolty distribution
of the prescribed type such that the area between the two curves
was 0.866. The vorticity distribution waa then twice the difference
between the two curves.

The average angle o; deviation was fw,nd to be –1°32t end the
shape after distortion was that designated as I irifi~-s 7. The
rotation angles of the second and third approximation wore -l”l~
and 0°19t, respectively, and the shapss obtained are designated a@
II and III in figure 7. The angles of devlatlon 8 found after
rotation are plotted in figure 8. The final blade angle wae 36021?.
The squares of the velocities on the upyer end lower sides are
plotted in figure 9.

f

*

PROBLEMS INVOLWZNG A SPECIFIED INCOMING-F3X)WDIREKYPION

Problem III
.

In reference 1 it was shown how, after a solution had been four@
for a given cascade in a particular mean flow, the conformal trane-
fomatiom of’the cascade to a circle could be found; whence the
solution for any other specified mean flow, incoming flow, or outgoing
flow can be obtained. The present section till discuss the prcaedure
for getting the solution of a given cascade directJy when the incoming
flow direction, rather than the mean flow direction, is specified. .

This problem is considered of interest because in experimental cascade
studies the incoming flow direction Is normally used as a baoic
parameter rather than the mean flow direction; furthermore, the
discussion of this probkmwlllprovfde a convenient basis for the

*

discussion of the succeeding problem.
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~Meanflow and to~l vortex stren@h.- In the first step, as in
refer6nce 1, the oonfomual tmnef’orma,tionoz’’theisolate~ b- to
a cirole is d.dxxmined by the methods of referenoe 4, The flow
field at the isolated bl.aCeis now considered as being oomposed of
three superimposed flow fields

(1) A uniform flow of uuit velooity, normal to the stagger line ~
(makinG an angle ~ with the chord) plus vortices on the blade of

total strength l?~ which maintain tho blade a streamline in this

flow.

{2) A urdform $?1owof velocity ~ to be determined, parallel

to the stagger l~ne (maki~ an ar@e up- with th6”6h~~]~lus---- -A ,

vortices of f3tren@h rp whioh maintain the blade a “streamlinein

this flow.

(3) The interference flow due to the’vortloes that represent .
all the othar bladea of the cascade, plus vortices of strength Pi

whioh maintain the blade a streamline in this flow. The total
vorticity on the blade will then be PT =i’N + rp + Ti.

By equation (35) of reference 4

,.

where R is the redias of the transformed oirole and et is the

value of the difference between tie cirole and near-oirole m~es at
the trailing edge. S~larly . ,, -—..

where the relations between the an~es ap. =d ~ -d We _tudes

of the nomal and ya=llel velocity components are shown in fi@ure 10.
—

TPw ~~~ t~ifi c~~~nt’a fiafjom~M distribution fyfVoJ?tiCity
along the external 13.+5qo”ischmea wtth ‘a”tot+d.vortex strengjth-=i
h.zstimporariQ keen nw3e iuiity; &i the CO=I=mo~w ~h- of ~or~x
strength on the central blade g 18 round by the rathod of referenoe 1.
The actual vor~ ~tremgth”induced by the extirnal blades P i is the
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A second relation between rT and ~ is given by elementaw

mmoade theory

P*
U() = u~-—

2

Simultaneous solution of equations (13) and (14) then gives the
zeroth approximation value of the total circulation and.of the
parallel component of’the mean flow ~

2nR[ul sin (~ + Et} -COH (c@+ ~)
uo=u~-

1- g + 2tiRSin ((%P+ et)
‘J

(25)

VortiU~—_di stribution.- When the man flow ha~ been found, the.—
total velocity potential on the central b@de and the vorttcity dia-
tributlon are found as in reference 1. With the use of thts vorticity
di6trlbution to ualculate g, the entire prooess is repeated to
detemine a new I’T amd vorticity d~etribution, The procedure is

continued until further ohanges are inappreciable. The velocity
dfatribution on the blade is then found by adding the velocity due to
the Interference to that due to the mean flow, as is done in
referenoe 1, or it may be found directly by diffezwntiating the
potential with respec~ to the distance &lo& the surface.

Exam le 111.- The potential flow was found for a casaade
-+solidtty 1.5 given shape and blade angle) with incoming flow

45° to the stagger line. The blade shaQe was that derived in
exemple I and the blade angle was 21°35~ whiob gives the same
of attack with respect to the incoming flow as in example 1.

of
at

angle

Uniform vortex distribution was assumed for the zeroth approxi-
mation,, The total vortex strength TT found for -t dfstibution

was 1.2302 and the mean flow was at 21°3t. Suooeseive approximations
gave the following values:

.

.

,

i
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13a

8

.

*

Approximation

o

I

III

Votiex strength I Mean flow direction

1.2302

1.2530 19° 40f

1.2457 20° 40~

1.2472 20° 389

The squares of the velocities on
are plotted in figure 11.

l?roblemIV

The prooedure of problem IIZ can

the upper and lower surfaces

be readily extended to deterinfne
‘ the stagger angle, for given incoming flow dir~tlon, at which an
airfoil in cascade 1s at the “ideal” angle of attaok.

Ideal angle of attack condition.- The ideal oondltion for an
airfoil is one for which there is a stagnation point at the nose, or
for zero thickness, the conditim for which air enters tangentially
at the leading edge. With regard to the flow in the plane of the
oirole to which the airfoil transfoms, it is the condition for
whioh the sane vortex camels the velocity at both the leading-edge
and trailing-edge points.

The strength of the vortex r’l, at the center of the oircle
whloh canoels the veloolty at the leadi~dge point is, in analo~ to
equation (13),

nlL ~ =r~~gf + 4=
[ 1-u. sin (CLp+ cn) + cos (~ + ~) (16)

The procedure of reference 1, modified to cmncel the induced velooity
at the leating-edge point, is again used to find the factor for this

. vortex strength induced by the external bludes g~~

The ideal angle of attack condition is then the oondltion at
. whi~h rT =rtTm r@?’~ =o, where the total induoed vortex

strengths rT andI’~Tare foundby equations (13) - (16).
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Detetination of blade angle.- A %la~e angle ~z is apeumed

for the first step and the procedure of the first approximation of
example III is carried out to obtain I’IT and r~lT and tho vorticitY

Mstribution corresponding to one of these two value~ of the total
vortex strength ts found. With this vorticity distribution assumed
on the oxternaZ airfoils, the calculation is repeated for a eecond
blade ~@O ~lIs which is chosen greater w less than fil aCcmd.i@Y

as r~ is greater or less than r~~, By interpolating between

or etirapolating from the results fcr these two.values of p, a
third value of! B h found for which I’T- r?T shmld be v~rY

nearly zero. A cal.culaticmat this value of f3 either ehould verify
that rT-rtT is practically zero or should provide the data for

a more accurate interpolation or extrapolation.

In the procedure as Just described, only one approximation is
made for each blade angle; that is, for each p the vortfcfty
distribution found for the preceding F (using either ~T or PtT)

is used for the external airf?oils. This mtkd should, in general,
suffice for satisfactory convergence; in any case, no more th= two
approximations for each angle should be required.

Example TV.- me blade angle was found for the blade derived in
example I–such that it would be at%he ideal angle of attack in a
cascade of solidity 1,5,with incoming flow k5° to the stagger line.
The initial blade angle and vortex distributions were those found
in example 111. ThU8 $1 s 21°35! ati rlT s 1.2J+72.By
equation (16), rtIT= 1.3923, Therefore I’lT- r$lT =-0.1451.
A second calculation, with ~11 = 20045? gave rIIT -r!~~~ = 0.01300
Interpolation between the two result8 indicated that rT- r~T would

be zero at 20°49~. A final calculation with pX1l = 20°@f verified

this fact and gave a vortex strength of 1.2491.

Langley Jkmorial Aeronautical Laboratory
Nhttinal Advi60ry Committee for Aeronauttas

Langley FieldJ V&,, Jhnuary 14,.1947
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APPENDIX
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SELF-INDUCED FLOW-FOR A CIRC!TIGARARC WITd

comm

The straem tunctlon induced
point a is (fig. I-2)

VORTICITY

at point b b~ an elemsnt du at

(Al)

With the chord and the arc element expressed in terms of tho angular
position of the points,

d~s(eb) s -

b3CGUk3 S

()eb - ea”
sin —

2

where e is the angulsr position of the points on tie arc, and

(A2)

p the radius

Equation (A3)

and the first
are retained.

eb - ea
of the uc. Or, with —=$a

2

(A3)

is integrated with resmct to #a from @n b @t

three terms of tineseries expansion of the integral “
The result of this integration, af~terall.terms which

do not contain eb have been omitted (since they add only constants
to the stre~ function) is

(P.4a)

—
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By addin~ ocnsta.nts
term, this equation

r

mm

nem ssary to complde the 6quare in the
may be put in the more cc.nvonientform

No. 3.254

lwt

..i

In order to find the selff-induoedavera~ veloci~ poteatial
OS for the circular arc, it is necessary to find the expro9t3ion for
the angle qb previously defined. From figvre 12 it is sew
that

,

.
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NACA TN No. 1254 Fig. 1

NATIONAL ADVISORY
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Figure 1.- Potential of the mean flow at a point on the blade.



Fig. 2 NACA TN NO. 1254
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,

\

(b) ~ > Sa (point .b to the right of point a) ●
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.

Figure 2.- Angles defining self-induced potentials on upper and lower
surfaces at point b due to vortex at point a. *
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Fig. 3—.
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Figure3.- Shapeand settingofbladeusedforzerothapproximationof
example 1,andofbladesderivedinthesubsequentapproximations.

*

.
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Figure 4.- Deviation angles between arc and streamline for the
approximations of example I, showing rate of convergence.

three

1

9

b



NACA TN NO. 1254 Fig. 5
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Figure 5.- Pressure distribution on airfoil derived in example I.
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Fig. 6 NACA TN ~0. 1254
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Figure 6.- Average and top surface velocities for example II.
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NACA TN No. 1254
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Figure7.- Shape ard setting of blade used for zeroth approximation of
example H, and of blades derived in the subsequent approxi?nations. .-



Fig. 8 NACA TN No. 1254
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Figure 8.- Deviation angles between arc and-streamline for the three
approximations of example II, showing rate of convergence. .
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distribution on airfoil derived in example IL
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NACA TN No. 1254Fig. 10
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Figure 10.- Definitions of angles and velocities for example HI.
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Figure 11. - Pressure distribution on airfoil in example III.



Fig. 12 NACA TN No. 1254
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Figure 12. - Definitions of angles and distances for derivation of
self-induced potential and stream function on circular arc.
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